Order 1 strongly minimal sets in differentially closed fields

نویسنده

  • Eric Rosen
چکیده

We give a classification of non-orthogonality classes of trivial order 1 strongly minimal sets in differentially closed fields. A central idea is the introduction of τ -forms, functions on the prolongation of a variety which are analogous to 1-forms. Order 1 strongly minimal sets then correspond to smooth projective curves with τ -forms. We also introduce τ -differentials, algebraic versions of τ -forms which are analogous to usual differentials, and develop their basic properties. This enables us to reformulate our classification scheme-theoretically in terms of curves with τ -invertible sheaves. This work partially generalizes and extends results of Hrushovski and Itai.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture notes on strongly minimal sets (and fields) with a generic automorphism

These lecture notes develop the theory of strongly minimal sets with a generic automorphism. They are strongly influenced by, and in some sense an exposition of the papers [1] and [2] which look at the case of algebraically closed fields with an automorphism. The deepest parts of these latter papers are concerned with dichotomy theorems (a type of SU -rank 1 is locally modular or nonorthogonal ...

متن کامل

Some new properties of fuzzy strongly ${{g}^{*}}$-closed sets and $delta {{g}^{*}}$-closed sets in fuzzy topological spaces

‎In this paper, a new class of fuzzy sets called fuzzy strongly ${{g}^{*}}$-closed sets is introduced and its properties are investigated. Moreover, we study some more properties of this type of closed spaces.

متن کامل

On Model Complete Differential Fields

We develop a geometric approach to definable sets in differentially closed fields, with emphasis on the question of orthogonality to a given strongly minimal set. Equivalently, within a family of ordinary differential equations, we consider those equations that can be transformed, by differential-algebraic transformations, so as to yield solutions of a given fixed first-order ODE X. We show tha...

متن کامل

Ax-Schanuel type theorems and geometry of strongly minimal sets in differentially closed fields

Let (K; +, ·,′ , 0, 1) be a differentially closed field. In this paper we explore the connection between Ax-Schanuel type theorems (predimension inequalities) for a differential equation E(x, y) and the geometry of the set U := {y : E(t, y)∧ y′ 6= 0} where t is an element with t′ = 1. We show that certain types of predimension inequalities imply strong minimality and geometric triviality of U ....

متن کامل

Geometric Axioms for Differentially Closed Fields with Several Commuting Derivations

A geometric first-order axiomatization of differentially closed fields of characteristic zero with several commuting derivations, in the spirit of Pierce-Pillay [13], is formulated in terms of a relative notion of prolongation for Kolchin-closed sets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008